IMPORTANT CALENDAR CHANGES

Close Tuesday: 15.3,15.4

Exam 2 is THURSDAY!!!

10.3,13.4,14.1,14.3,14.4,14.7,15.1-4

Entry Task (Old Exam Question)

Find the volume of the wedge shaped solid that lies above the xy-plane, below the plane $z=x$, and within the solid cylinder $x^{2}+y^{2} \leq 9$.

15.4 Center of Mass

Motivation "the see-saw"

New App: Consider a thin plate (/amina) with density at each point given by

$$
\rho(x, y)=\text { mass/area }\left(\mathrm{kg} / \mathrm{m}^{2}\right) .
$$

We will see that the center of mass (centroid) is given by

$$
\begin{aligned}
\bar{x} & =\frac{\text { "Moment about y" }}{\text { Total Mass }} \\
& =\frac{\iint_{R} x p(x, y) d A}{\iint_{R} p(x, y) d A}
\end{aligned}
$$

$$
\bar{y} \quad=\frac{\text { "Moment about } \mathrm{x} "}{\text { Total Mass }}
$$

$$
=\frac{\iint_{R} y p(x, y) d A}{\iint_{R} p(x, y) d A}
$$

In general: If you are given \boldsymbol{n} points
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
corresponding masses $m_{1}, m_{2}, \ldots, m_{n}$ then

$$
\begin{aligned}
& \bar{x}=\frac{m_{1} x_{1}+\cdots+m_{n} x_{n}}{m_{1}+\cdots+m_{n}}=\frac{M_{y}}{M} \\
& \bar{y}=\frac{m_{1} y_{1}+\cdots+m_{n} y_{n}}{m_{1}+\cdots+m_{n}}=\frac{M_{x}}{M}
\end{aligned}
$$

Derivation:

1. Break region into m rows and n columns.
2. Find center of mass of each rectangle:

$$
\left(\bar{x}_{i j}, \bar{y}_{i j}\right)
$$

3. Estimate the mass of each rectangle:

$$
m_{i j}=p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A
$$

4. Now use the formula for n points.
5. Take the limit.

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} m_{i j} x_{i j}}{\sum_{i=1}^{m} \sum_{j=1}^{n} m_{i j}} \\
& =\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \bar{x}_{i j} p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A}{\sum_{i=1}^{m} \sum_{j=1}^{n} p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A}
\end{aligned}
$$

Center of Mass:

$$
\begin{gathered}
\bar{x}=\frac{\text { Moment about } \mathrm{y}}{\text { Total Mass }}=\frac{\iint_{R} x p(x, y) d A}{\iint_{R} p(x, y) d A} \\
\bar{y}=\frac{\text { Moment about } \mathrm{x}}{\text { Total Mass }}=\frac{\iint_{R} y p(x, y) d A}{\iint_{R} p(x, y) d A}
\end{gathered}
$$

Example:
Consider a 1 by 1 m square metal plate. The density is given by $p(x, y)=k x \mathrm{~kg} / \mathrm{m}^{2}$ for some constant k.
Find the center of mass.

Side note:
The density $p(x, y)=k x$ means that the density is proportional to x which can be thought of as distance from the y-axis.
In other words, the plate gets heavier at a constant rate from left-to-right.

Translations:
Density proportional to the dist. from...

$$
\begin{array}{lll}
\text {...the } y \text {-axis }-- & p(x, y)=k x . \\
\text {...the } x \text {-axis }-- & p(x, y)=k y . \\
\text {...the origin }-- & p(x, y)=k \sqrt{x^{2}+y^{2} .}
\end{array}
$$

Density proportional to the square of the distance from the origin:

$$
p(x, y)=k\left(x^{2}+y^{2}\right)
$$

Density inversely proportional to the distance from the origin:

$$
p(x, y)=\frac{k}{\sqrt{x^{2}+y^{2}}}
$$

Example (Old Exam Question)

 A lamina occupies the region R in the first quadrant that is above the line $y=x$ and between the circles$x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
The density is proportional to the distance from the origin.
Find the y-coordinate of the center of mass.

